
Ad Hoc Networks 11 (2013) 2661–2674
Contents lists available at SciVerse ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
SVELTE: Real-time intrusion detection in the Internet of Things
1570-8705/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2013.04.014

⇑ Corresponding author.
E-mail addresses: shahid@sics.se (S. Raza), linus@sics.se (L. Wallgren),

thiemo@sics.se (T. Voigt).
Shahid Raza a,⇑, Linus Wallgren a, Thiemo Voigt a,b

a SICS Swedish ICT, Stockholm, Sweden
b Department of Information Technology, Uppsala University, Sweden
a r t i c l e i n f o

Article history:
Available online 17 May 2013

Keywords:
Intrusion detection
Internet of Things
6LoWPAN
RPL
IPv6
Security
Sensor networks
a b s t r a c t

In the Internet of Things (IoT), resource-constrained things are connected to the unreliable
and untrusted Internet via IPv6 and 6LoWPAN networks. Even when they are secured with
encryption and authentication, these things are exposed both to wireless attacks from
inside the 6LoWPAN network and from the Internet. Since these attacks may succeed,
Intrusion Detection Systems (IDS) are necessary. Currently, there are no IDSs that meet
the requirements of the IPv6-connected IoT since the available approaches are either cus-
tomized for Wireless Sensor Networks (WSN) or for the conventional Internet.

In this paper we design, implement, and evaluate a novel intrusion detection system for
the IoT that we call SVELTE. In our implementation and evaluation we primarily target
routing attacks such as spoofed or altered information, sinkhole, and selective-forwarding.
However, our approach can be extended to detect other attacks. We implement SVELTE in
the Contiki OS and thoroughly evaluate it. Our evaluation shows that in the simulated sce-
narios, SVELTE detects all malicious nodes that launch our implemented sinkhole and/or
selective forwarding attacks. However, the true positive rate is not 100%, i.e., we have some
false alarms during the detection of malicious nodes. Also, SVELTE’s overhead is small
enough to deploy it on constrained nodes with limited energy and memory capacity.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

With IPv6 over Low-power Wireless Personal Area Net-
work (6LoWPAN) [1,2] it is possible to connect resource
constrained devices, such as sensor nodes, with the global
Internet using the standardized compressed IPv6 protocol.
These networks of resource constrained devices, also called
6LoWPAN networks, and the conventional Internet form
the Internet of Things or strictly speaking the IP-connected
Internet of Things (IoT). A 6LoWPAN Border Router (6BR) is
an edge node that connects 6LoWPAN networks with the
Internet. Due to the resource constrained nature of the de-
vices or things, 6LoWPAN networks mostly use IEEE
802.15.4 as link and physical layer protocol.
Unlike typical wireless sensor networks (WSN), 6LoW-
PAN networks or IP-connected WSN are directly connected
to the untrusted Internet and an attacker can get access to
the resource-constrained things from anywhere on the
Internet. This global access makes the things vulnerable
to intrusions from the Internet in addition to the wireless
attacks originating inside 6LoWPAN networks. Potential
applications of the IoT are smart metering, home or build-
ing automation, smart cities, logistics monitoring and
management, etc. These applications and services are usu-
ally charged and the revenue is based on data or services
used. Hence, the confidentiality and integrity of the data
and timely availability of services is very important.

Researchers have already investigated message security
for the IoT using lightweight DTLS [3], IPsec [4], and IEEE
802.15.4 link-layer security [5]. Even with message secu-
rity that enables encryption and authentication, networks
are vulnerable to a number of attacks aimed to disrupt
the network. Hence, an Intrusion Detection System (IDS)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2013.04.014&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2013.04.014
mailto:shahid@sics.se
mailto:linus@sics.se
mailto:thiemo@sics.se
http://dx.doi.org/10.1016/j.adhoc.2013.04.014
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc


Fig. 1. An IoT setup where IDS modules are placed in 6BR and also in individual nodes.

2662 S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674
is necessary to detect intruders that are trying to disrupt
the network.

The available IDSs for WSNs could be used in the IoT.
However, most of these approaches are built on the
assumptions that (i) there is no central management point
and controller, (ii) there exists no message security, and
(iii) nodes cannot be identified globally. The IoT has a novel
architecture where the 6BR is assumed to be always acces-
sible, end-to-end message security is a requirement [5],
and sensor nodes are globally identified by an IP address.
Besides these opportunistic features, an IDS for the IoT is
still challenging since the things (i) are globally accessible,
(ii) are resource constrained, (iii) are connected through
lossy links, and (iv) use recent IoT protocols such as CoAP
[6], RPL [7], or 6LoWPAN [2]. Therefore, it is worth investi-
gating and providing an IDS for the IoT exploiting these
opportunities and threats.

To this end, we design, implement, and evaluate a novel
Intrusion Detection system for the IoT that we call
SVELTE.1 To the best of our knowledge this is the first at-
tempt to develop an IDS specifically designed for the IoT.
Network layer and routing attacks are the most common at-
tacks in low power wireless networks [8], and in this paper
we primarily target these attacks. SVELTE is also inherently
protected against sybil and clone ID attacks; we discuss
these attacks in Section 3.2.5. We evaluate SVELTE against
sinkhole and selective-forwarding attacks. Our approach is,
however, extensible and can be used to detect other attacks
as we discuss in Section 7.

The IPv6 Routing Protocol for Low-Power and Lossy
Networks (RPL) [7] is a novel standardized routing protocol
primarily designed to meet the specific routing require-
ments of the IoT. SVELTE uses RPL as a routing protocol.
It has two main components: the 6LoWPAN Mapper
(6Mapper), and intrusion detection modules. The 6Mapper
reconstructs RPL’s current routing state, i.e., its directed
acyclic graph, at the 6BR and extends it with additional
intrusion detection parameters.

One of the important decisions in intrusion detection is
the placement of the IDS in the network. We use a hybrid
approach, see Section 3, and place the processing intensive
SVELTE modules in the 6BR and the corresponding light-
weight modules in the constrained nodes. Fig. 1 presents
an overview of our IDS that we explain in more detail in
1 SVELTE literary means elegantly slim.
Section 3. One of our main design goals is that the IDS
should be lightweight and comply with the processing
capabilities of the constrained nodes.

In addition to the 6Mapper and the intrusion detection
techniques, we also propose and implement a distributed
mini-firewall to protect 6LoWPAN networks against global
attackers from Internet. We implement SVELTE in the Con-
tiki operating system [9].

The main contributions of this paper are:

� We present SVELTE, a novel IDS with an integrated
mini-firewall for the IP-connected IoT that uses RPL as
a routing protocol in 6LoWPAN networks.
� We implement SVELTE and thoroughly evaluate it for

6LoWPAN networks that consist of resource-con-
strained things and have lossy communication links.

The next section of this paper gives an overview of the
technologies used in SVELTE. Section 3 describes SVELTE
that includes 6Mapper, the actual intrusion detection tech-
niques, and the firewall. In Section 4 we detail SVELTE’s
implementation for the Contiki OS. Section 5 presents our
detailed performance evaluation of SVELTE. We highlight
the current IDSs and their applicability in the IoT in Sec-
tion 6. Section 7 discusses the possible extensions in
SVELTE, and finally we conclude the paper in Section 8.

2. Background

In this section we briefly discuss the technologies in-
volved in SVELTE for the IoT.

2.1. The Internet of Things

The Internet of Things (IoT) or strictly speaking IP-con-
nected IoT is a hybrid network of tiny devices, typically
WSNs, and the conventional Internet. Unlike typical WSN
where devices are mostly resource constrained and unlike
in the Internet where devices are mostly powerful, the
nodes or things in the IoT are heterogeneous devices. An
IoT device can be a light bulb, a microwave, an electricity
meter, an automobile part, a smartphone, a PC or a laptop,
a powerful server machine or a cloud, or potentially any-
thing. Hence the number of potential devices that can be
connected to the IoT are in hundreds of billion. IPv6’s huge
address space has been designed to address this issue.



Fig. 2. A sample RPL DODAG that has N nodes with IPv6 addresses from
aaaa::1 to aaaa::N.

S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674 2663
To connect resource constrained nodes such as WSN
with the Internet using IPv6, a compressed version of the
IPv6 called 6LoWPAN has been standardized [1,2]. The
6LoWPAN protocol enables the routing of IPv6 packets in
the IP-connected WSN (also called 6LoWPAN network) in
a compressed and/or fragmented form. Compression is
needed since 6LoWPAN’s link and physical layer protocol,
IEEE 802.15.4, has a Maximum Transmission Unit (MTU)
of 127 bytes. 6LoWPAN supports multi-hop enabling nodes
to forward packets on behalf of other nodes that are not di-
rectly connected to the 6LoWPAN border router (6BR). The
6BR is an end device that connects 6LoWPAN networks
with the Internet.

A 6LoWPAN network is a multi-hop wireless network
where communication links are usually lossy and devices
are resource-constrained and often battery powered. There-
fore, the connection-less User Datagram Protocol (UDP) is
mostly used in 6LoWPAN networks. Further, connection ori-
ented web protocols such as HTTP are not feasible and a new
protocol, the Constrained Application Protocol (CoAP), is
being standardized for the IoT. Further, a new routing proto-
col, IPv6 Routing Protocol for Low-Power and Lossy Net-
works (RPL) [7], is standardized. SVELTE is primarily
designed for RPL-based 6LoWPAN networks.

2.2. RPL

The IPv6 Routing Protocol for Low-Power and Lossy
Networks (RPL) [7] is a standardized routing protocol for
the IP-connected IoT. RPL is a versatile protocol that en-
ables many-to-one, one-to-many, and one-to-one commu-
nication. It creates a Destination-Oriented Directed Acyclic
Graph (DODAG) and supports different modes of opera-
tion: uni-directional traffic to a DODAG root (typically
the 6BR), and bi-directional traffic between constrained
nodes and a DODAG root. A typical RPL DODAG is shown
in Fig. 2 where each node has a node ID (an IPv6 address),
one or more parents (except for the DODAG root), and a list
of neighbors. Nodes also have a rank that determines their
individual position with respect to the DODAG root and
relative to other nodes. Ranks strictly increase from the
DODAG root to nodes and strictly decrease in the direction
towards the DODAG root.

Every node in the RPL network must be able to deter-
mine whether packets are to be forwarded to its parents,
i.e., upwards, or to its children. The most simple way for
a node to accomplish this is to know all its descendants
and use the route to its parent as default route for all other
packets. In-network routing tables are required to separate
packets heading upwards and the packets heading down-
wards in the network. This is the mechanism in the RPL
implementation in the Contiki operating system [9], that
we use in this paper to evaluate SVELTE.

2.3. Security in the IoT

Real world IoT deployments require security. The com-
munication between devices in the IoT can be protected on
an end-to-end or on a hop-by-hop basis. IPsec [4] in trans-
port mode provides end-to-end security between two
hosts in the IoT. In IPv6 networks and hence in 6LoWPAN,
IPsec is mandatory to implement, meaning that each IPv6-
enabled device must have IPsec capabilities. IPsec’s ESP
protocol [10] ensures application data confidentiality and
optionally data integrity and authentication, and AH [11]
protocol ensures the integrity of whole IPv6 datagram that
includes application data and IPv6 headers.

If the Constrained Application Protocol (CoAP) [6] is
used in the IoT as an application protocol then end-to-
end security between two applications can be provided
with the Datagram Transport Layer Security (DTLS). Also,
IEEE 802.15.14 link-layer security can be used for per
hop security.

Besides having message security, the IoT is vulnerable
to a number of attacks [12] aimed to disrupt the network;
hence intrusion detection mechanisms are important in
real world IoT deployments, e.g., in building automation,
industrial automation, smart metering and smart grids.

2.4. IDS

An Intrusion Detection System (IDS) is a tool or mecha-
nism to detect attacks against a system or a network by
analyzing the activity in the network or in the system it-
self. Once an attack is detected an IDS may log information
about it and/or report an alarm. Broadly speaking, the
detection mechanisms in an IDS are either signature based
or anomaly based.

Signature based detections match the current behavior
of the network against predefined attack patterns. Signa-
tures are pre-configured and stored on the device and each
signature matches a certain attack. In general signature
based techniques are simpler to use. They need, however,
a signature of each attack and must also store it. This



Fig. 3. Packet format of the mapping response.

2664 S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674
requires specific knowledge of each attack and storage
costs grow with the number of attacks. This approach is
more static and cannot detect new attacks unless their sig-
nature is manually added into the IDS.

Anomaly based detection tries to detect anomalies in
the system by determining the ordinary behavior and
using it as baseline. Any deviations from that baseline is
considered an anomaly. On one hand, anomaly based sys-
tems have the ability to detect almost any attack and adapt
to new environments, but on the other hand these tech-
niques have rather high false positive rates (to raise an
alarm when there is no attack) as deviations from the base-
line might be ordinary. Also, they have comparatively high
false negative rates (no alarm when there is an attack) as
attacks might only show a small deviation that is consid-
ered within the norm.

Keeping in view the novel requirements of the IoT, in
this paper we use a hybrid of signature and anomaly based
detections. We try to balance between the storage cost of
the signature based detection and the computing cost of
the anomaly based techniques. In SVELTE the detection
techniques mostly target routing attacks such as sink-hole,
selective forwarding, and spoofed or altered routing infor-
mation [12]; however, SVELTE is extensible and can be
used to detect other attacks as we discuss in Section 7.

In sinkhole attacks [12] an attacker advertises a benefi-
cial routing path and thus makes many nodes route traffic
through it. In RPL, an attacker can launch a sinkhole attack
by advertising a better rank thus making nodes down in
the DODAG select it as parent. In selective forwarding at-
tacks [12], an attacker forwards only selected packets. For
example, an attacker could forward only routing messages
and drop all other packets to disrupt part of the network.

Once an attack is detected, the goal is to mitigate its ef-
fect and remove the attacker from the network. The sim-
plest approach to remove an attacker is to ignore it. This
requires the identification of the attacking node. Neither
MAC nor IP addresses are trustworthy as they can be easily
spoofed. One possible way to ignore a node is to use either
a blacklist or a whitelist. A blacklist would include all mali-
cious nodes and a whitelist would include all valid nodes.
Maintaining a whitelist is easier in the presence of many
attackers. In either way it is necessary that an attacker can-
not obtain another valid identity, with sybil or clone ID at-
tacks [12], as otherwise the attacker could restart the
attack without effort. In SVELTE we use a whitelist.
3. SVELTE: An IDS for the IoT

Recall that a 6LoWPAN network is a lossy and wireless
network of resource constrained nodes which uses IPv6 as
networking protocol and often RPL as a routing protocol.
One of the design goals of any protocol for the IoT is its
ability to be deployed and run on constrained nodes in
6LoWPAN networks. Based on the novel requirements of
the IoT, we propose SVELTE: a lightweight yet effective
intrusion detection system for the IoT. We also compli-
ment SVELTE with a distributed mini-firewall in order to
filter malicious traffic before it reaches the resource con-
strained nodes.

We design SVELTE for a 6LoWPAN network that uses
message security technologies, such as IPsec [4] and DTLS
[3] to provide end-to-end message security. In the rest of
this section we present our intrusion detection system.

Placement of SVELTE: The placement of an IDS is an
important decision that reflects the design of an IDS and
the detection approaches. Keeping in view the resource
constrained nature of the devices and the IoT setup shown
in Fig. 1, we use a hybrid, centralized and distributed, ap-
proach and place IDS modules both in the 6BR and in con-
strained nodes.

SVELTE has three main centralized modules that we
place in the 6BR. The first module, called 6LoWPAN Map-
per (6Mapper), gathers information about the RPL network
and reconstructs the network in the 6BR, as we describe in
Section 3.1. The second module is the intrusion detection
component that analyzes the mapped data and detects
intrusion; Section 3.2 discusses this. The third module, a
distributed mini-firewall, is designed to offload nodes by
filtering unwanted traffic before it enters the resource con-
strained network; Section 3.3 details this. The centralized
modules have two corresponding lightweight modules in
each constrained node. The first module provides mapping
information to the 6BR so it can perform intrusion detec-
tion. The second module works with the centralized fire-
wall. Each constrained node also has a third module to
handle end-to-end packet loss; this is discussed in
Section 3.2.4.

3.1. 6LoWPAN Mapper

A vital component of SVELTE is the 6LoWPAN Mapper
(6Mapper) that reconstructs the RPL DODAG in the 6BR
and complements it with each node’s neighbor and parent
information. To reconstruct the DODAG, the 6Mapper
sends mapping requests to nodes in the 6LoWPAN network
at regular intervals. The request packet contains the infor-
mation necessary to identify an RPL DODAG. It includes the
RPL Instance ID (IID), the DODAG ID, and the DODAG Ver-
sion Number [7]. It also includes a timestamp (Ts) to know
the recency of the mapping information received. The total
size of a mapping request packet is 5 bytes.

Each node responds to the mapping request by per-
pending a Node ID to the request packet and by appending
node rank, parent ID, and all neighbor IDs and ranks. An
illustration of the mapping response packet format is
shown in Fig. 3. The basic response packet is 13 bytes long
and requires an additional four bytes for each neighbor.

6Mapper with Authentic and Reliable Communication: It is
likely that IPsec Authentication Header (AH) [4] or IEEE
802.15.4 link-layer security are enabled in the IoT to pro-
tect the integrity of the IP headers. In this case there is



S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674 2665
no need to include the node ID in the response packet, as
that would be the source address in the IP header. When
the 6Mapper host, i.e., 6BR, has the same IPv6 address as
the DODAG root it is also unnecessary to include the
DODAGID that corresponds to the destination IP in the IP
header. In the request packet the source and destination
fields in the IP header have the opposite meaning, i.e.,
the IP source corresponds to the DODAGID and the destina-
tion corresponds to the node ID.

If mapping-packets are transferred reliably, for exam-
ple, by using CoAP that employs acknowledgements, there
is no need to send a timestamp with the mapping data as
we can be sure that the packets arrive within the timeout
specified for the underlying protocol. When the communi-
cation in the 6LoWPAN is authentic and reliable, the size of
the 6Mapper request and response packets is reduced to
1 byte and 8 bytes, respectively.

Unidirectional RPL 6Mapper: Some RPL implementations
only support traffic destined to the DODAG root, typically
the 6BR. To provide network mapping for these 6LoWPAN
networks it is possible to alter the 6Mapper and let it wait
for the periodic mapping response packets from each node
without sending the explicit request packet. This solution
has the additional advantage that it reduces traffic in the
network which reduces power consumption. However,
slightly more logic has to be added in each node which in-
creases the memory consumption.

Valid inconsistencies in 6Mapper: In our 6Mapper there is
a possibility that mapping responses are inconsistent with
each other, which can lead to false positives if not handled
properly. This can happen if the information a node sends
to the network mapper has become outdated or when an
attacker deliberately changes the information. Below we
show how valid routing graph inconsistencies occur. Con-
sider a RPL DODAG where Node P is the parent of node C,
the function Ra(Node) represents the actual rank of Node
and Rm(Node) represents the rank known to the 6Mapper.

– Node P sends its rank to the 6Mapper, Ra(P) = 1024 and
Rm(P) = 1024.

– Node P recalculates its rank and advertises it,
Ra(P) = 512 and Rm(P) = 1024.

– Node C receives the updated rank from P.
– Node C recalculates its rank. Ra(C) = 768.
– Node C sends its rank to the 6Mapper, Ra(C) = 768 and

Rm(C) = 768.

As can be seen the state of the network is:

Ra(P) = 512.
Ra(C) = 768.
Rm(P) = 1024.
Rm(C) = 768.

This state is perfectly valid as node P has a better rank
than node C, Ra(P) < Ra(C). However, the 6Mapper assumes
that the child, node C, has a better rank than its parent,
which is inconsistent as Rm(P) > Rm(C).

This is a problem which needs to be taken into consid-
eration when designing methods for analyzing the mapped
data. Leveraging the amount of sensors in a 6LoWPAN we
improve the accuracy when faced with both natural and
artificial inconsistencies; Section 3.2.1 discusses methods
to overcome such inconsistencies.

Mapping requirements: For our 6Mapper to be fully
effective the packets used to map the network need to be
indistinguishable from other packets. If an adversary can
distinguish the traffic used by the 6Mapper from other
traffic it is possible for an adversary to perform selective
forwarding and only forward traffic necessary for the map-
per, while dropping other traffic.

The first step to prevent this is to encrypt the data, to
avoid that the packet content is revealed to an eaves-
dropping adversary. As mentioned earlier we assume
that the message contents are protected with upper-
layer security protocols such as IPsec or DTLS. Secondly,
headers should not reveal any information that enables
an eavesdropper to determine that the packet is used
by the 6Mapper. Therefore it can be problematic if the
source of the 6Mapper is the same for all nodes, as the
IP header must be readable for all nodes. The adversary
could use the IP header and the knowledge about the
6Mapper’s host address to identify network mapping
traffic. A simple solution to prevent this is to assign as
many IPv6 addresses to the 6Mapper as there are nodes
in the network. This is possible for RPL as IPv6 has a
potentially unlimited address space of 2128 addresses.
Thus, when an adversary compromises a node it will
only know the node’s mapping address and no other
mapping addresses. Hence, it is not able to distinguish
between ordinary traffic and mapping traffic for other
nodes.

However, if the attacked node has more resources it
may use more advanced traffic patterns and node behavior
analysis techniques, and it might still be possible for an
adversary to distinguish between ordinary and mapper-re-
lated traffic.
3.2. Intrusion detection in SVELTE

We design and implement three detection techniques
which use the 6Mapper. The detection techniques primar-
ily detect spoofed or altered information, sinkhole, and
selective forwarding attacks. However, our approach is
extensible and more attacks can be detected; we discuss
some of the possible extensions in Section 7.
3.2.1. Network graph inconsistency detection
In the IoT individual nodes may be compromised by an

attacker and later used to launch multiple attacks. For
example, in RPL-based 6LoWPAN networks the attacker
can use compromised nodes to send wrong information
about their rank or one of their neighbor’s rank to the
6Mapper. It is also possible to get an incorrect or inconsis-
tent view of the network because of the lossy links in the
IoT. It is therefore important to detect the inconsistencies,
distinguish between valid and invalid consistencies, and
correct the invalid information. The complete algorithm
to detect and correct the routing graph inconsistencies is
described in Algorithm 1.



2666 S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674
Algorithm 1. Detect and Correct the RPL DODAG Incon-
sistencies
Require: N – A list of nodes
for Node in N do

for Neighbor in Node.neighbors do
Diff = jNode.neighborRank

(Neighbor) � Neighbor.rankj
Avg = (Node.neighborRank

(Neighbor) + Neighbor.rank)/2
{If the absolute difference is greater than 20% of

the ranks average}
if Diff > Avg � 0.2 then

Node.fault = Node.fault + 1
Neighbor.fault = Neighbor.fault + 1

end if
end for

end for
for Node in N do

if Node.fault > FaultThreshold then
Node.rank = Rank reported for Node by any

neighbor
for Neighbor in Node.neighbors do

Node.neighborRank (Neighbor) = Neighbor.rank
end for

end if
end for

In order to detect incorrect information and to make sure
that information is consistent across the network, each edge
in the network is checked. The 6Mapper provides node ID
and rank of each node, of its parents, and of its neighbors.
We iterate over each edge in the network, checking that both
nodes agree with each other about their rank and detect the
inconsistencies. It is possible that a false alarm is raised be-
cause the detected incorrect information is a result of valid
mapping inconsistencies described in Section 3.1.

In order to distinguish between valid and invalid incon-
sistencies, or to avoid false positives, we rely on (i) the
number of reported faulty ranks and (ii) the difference be-
tween the two reported ranks. We use a simple threshold,
referred to as FaultThreshold in Algorithm 1, and classify a
node as faulty if the number of disagreements this node
has with other nodes are larger than the threshold. Most
of the disagreements between two nodes are small and a
result of varying link quality and ultimate RPL adjust-
ments. To accommodate valid inconsistencies, we only
consider disagreements where the difference of the two
nodes ranks is greater than 20% of the ranks average; this
value is based on our empirical evaluation of SVELTE.

We correct the faulty information when both of the above
conditions are met, i.e., once we have large inconsistencies
towards a node. The faulty information corresponding to a
node is corrected by changing the rank known to 6Mapper
by substituting it with the information reported by one of
its neighbors. The neighbor information is updated with
the information reported directly by its neighbors.

Once it is detected that a routing inconsistency is a re-
sult of a deliberate attack, SVELTE either removes the
faulty node or corrects the inconsistency. SVELTE keeps
track of inconsistencies and if it is the first time a node is
detected as malicious it is not immediately removed as it
may be a false alarm or result of a passive attack; in this
case the faulty information is corrected as described above.
However, if the same node is detected as faulty again it is
removed by deleting its entry from the whitelist main-
tained in the 6Mapper.

3.2.2. Checking node availability
It is important to detect if a node or set of nodes are

available and operating properly. When a particular node
is compromised it may launch multiple attacks to disrupt
the network. For example, it may launch a selective for-
warding attack and intelligently drop messages. If an RPL
network uses CoAP to send application data the attacker
could forward RPL traffic but drop CoAP traffic. This would
result in a seemingly working network even though no
useful traffic gets through.

Depending on the RPL implementation and the configu-
ration, we can use the RPL routing table in the RPL DODAG
root as a basis for available nodes in the network. As we re-
quire a whitelist of valid nodes in the network for access
control we could also use that list as a basis for detection.

When we compare the whitelisted nodes with the
nodes in our RPL DODAG all differences are offline nodes
or unauthorized nodes. Let W be a set of all whitelisted
nodes and let R be the nodes known to RPL in the RPL DO-
DAG root, the offline nodes, O are thus:

W n R ¼ O

where O is the relative complement (n) between two sets
W and R meaning that O contains all elements of W that
are not in R.

It is however not possible to determine if nodes ex-
cluded from O are being filtered or are simply offline. That
is, if an attacker performs a selective forwarding attack and
filters everything but RPL messages it would with the pre-
vious method appear as if the nodes are still online, even
though all application data is being filtered. By extending
the above method with the information available through
6Mapper it is also possible to detect selective forwarding
attacks. Let M represent nodes known to 6Mapper and F
be the filtered nodes we get the following relationship:
Algorithm 2. Detect Filtered Nodes

Require: W – Set of whitelisted nodes
Require: M – Set of nodes known to the 6Mapper

F = [] {F will contain the filtered nodes}
for Node in W do

if Node in M and M[Node].lastUpdate
() > RecencyThreshold then

F.add (Node)
end if

end for
return F

W nM ¼ F

As the 6Mapper for each node keeps track of the last time it
received a packet from a node we can detect filtered nodes by



S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674 2667
simply checking if we have not recently received any packets
from them. In order to mitigate the effects of packet loss or
other similar events common in lossy networks we introduce
a threshold on the time since our last packet. We define the
threshold as a number of mapping-requests allowed to be
unanswered. With this threshold it is possible to alter the
sensitivity of the filtered node detection to be easily adapt-
able to specific deployments. Algorithm 2 describes this
behavior and finds all filtered nodes F in a network.

3.2.3. Routing graph validity
By artificially altering the routing graph, an attacker can

reshape the topology of the network and can control the traf-
fic flow to his advantage. For example, an attacker performs a
sinkhole attack by advertising a very good rank to its neigh-
bors. The problem becomes more severe if the sinkhole attack
is coupled with other attacks. A sinkhole attack can, for exam-
ple, enable the attacker to intercept and potentially alter
more traffic than otherwise. If combined with a selective for-
warding attack a much larger part of the network can be con-
trolled. It is therefore important to detect such attacks.

With SVELTE, it is possible to detect most sinkhole at-
tacks by analyzing the network topology. If the routing
graph is inconsistent it is likely an attack is in place. In
RPL, the rank in the network should be decreasing towards
the root, i.e., in any child-parent relation the parent should
always have a lower rank than the child. All cases where a
child has a better rank than its parent is an indication of
routing graph incoherency, as specified in [7].

When an incoherency is found the child in the relation
is at fault, as a node should never have a lower rank than
its parent. With such a simple approach false positives
are likely to arise, i.e., we detect inconsistencies while in
fact all nodes are working properly.

In order to minimize the effects of valid inconsistencies,
that can raise false positives, we require several consecu-
tive inconsistencies to be reported for the same nodes. That
is we require more than one sample of the network to have
the same incoherency to raise an alarm. This is described in
Algorithm 3 as FaultThreshold which is a global state kept
between consecutive runs of the detection algorithm. In
RPL the rank between any host and its parent is at least
MinHopRankIncrease [7]. We utilize this in our algorithm
to better conform to the RPL standard.

Algorithm 3. Finding Rank Inconsistencies

Require: N – A list of nodes
for Node in N do

if
Node.rank + MinHopRankIncrease < Node.parent.rank
then

Node.fault = Node.fault + 1
end if

end for
for Node in N do

if Node.fault > FaultThreshold then
Raise alarm

end if
end for
A sinkhole attack would in most cases be detected by
this algorithm. As the attacker advertises a beneficial rank
it will most likely have to advertise a better rank than its
parent and as such would be detected by the detection
scheme described above. If a sinkhole attack is to remain
undetected the advertised rank of a malicious node must
not be better than that of its parent. This would in turn re-
sult in the adversary’s rank only being slightly improved
over a non-adversarial node and thus yield little benefit.

In RPL, the rank as well as the parent selection is calcu-
lated via an objective function, which might use factors
such as link quality in its calculation; for example when
the Expected Transmission Count (ETX) [13] is used to cal-
culate rank. The ETX is an approximation of the link quality
and as such a bad link might affect the choice of parent
more than a slight difference in rank. This would further
lower the impact of a sinkhole attack that is undetectable
by Algorithm 3.

Algorithm 4. Adapt to End-to-end Losses
Require: dest – The destination with packet loss
nexthop = getNexthop (dest)
nexthop.metric = nexthop.metric � 0.8

3.2.4. End-to-end packet loss adaptation
We design an intentionally simple system to take end to

end losses into account when calculating the route and to
mitigate the effects of filtering hosts. If a reliable higher
layer protocol such as TCP or CoAP (with confirmable mes-
saging) is used, packet loss can be detected using the pro-
tocol’s acknowledgement mechanism. The reasoning
behind a host-to-host packet loss indication is that if an at-
tacker is filtering packets some hops down the path we
want to be able to adapt to it. In the RPL-based network,
if a packet is filtered somewhere on the path a new parent
should eventually be tried.

The approach is not able to adapt to every form of filter-
ing, for example, when the attacker is located such that all
packets have to go through it. If however a collection-
scheme with acknowledgements is also running in the net-
work all data losses should be corrected for. Since all nodes
will try to send data to the sink all nodes with a path
through the attacker will also notice the losses and correct
for them, given that the attacker filters all application data.
If a packet is not able to reach its destination, we slightly
alter the route metric of the route, that is the next-hop
neighbor for that packet, (20% in Algorithm 4) to reflect
that there might be an attacker along the path. Algorithm
4 describes end-to-end packet loss adaptation.

3.2.5. Sybil and CloneID attacks protection
In a Sybil attack an attacker copies several logical iden-

tities on one physical node whereas in a cloned identity
(CloneID) attack the attacker copies the same logical iden-
tity on several physical nodes. Both attacks are aimed to
gain access to a large part of the network or in order to
overcome a voting scheme. The 6Mapper only considers
the latest information received from each host in the net-



2 For the source code visit: http://www.shahidraza.info.

2668 S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674
work where a host is identified by an IP address. A sybil at-
tack has no direct effect on the 6Mapper as it makes no dif-
ference if the identities are on the same physical node as if
they are separate physical entities, each host is treated
individually in both cases. While cloned identities can
interrupt the routing in a network it does not affect the
6Mapper directly as the 6Mapper only considers the latest
information received from one of the identity. As a result if
two cloned nodes send information to the 6Mapper there is
no difference compared to if one node sends the informa-
tion twice, thus not directly affecting the operations of
the 6Mapper. Sybil attacks and cloned identities are both
often used to disrupt different voting schemes by giving
an attacker more votes. Voting schemes based upon 6Map-
per collected data will be unhindered by both sybil attacks
and cloned identities.

3.3. Distributed mini-firewall

Though SVELTE can protect 6LoWPAN networks against
in-network intrusion, it is also important that the resource
constrained nodes are protected against global attackers
that are much more powerful. For example, it is easier
for hosts on the Internet than constrained nodes in 6LoW-
PAN networks to perform denial of service attacks. Fire-
walls are usually used to filter external hosts and/or
messages destined to local networks. As the end-to-end
message confidentiality and integrity is necessary in the
IoT, the SVELTE module in the 6BR or a firewall cannot in-
spect the contents of the encrypted messages; therefore, it
is hard to distinguish between the legitimate and mali-
cious external traffic.

We propose a distributed mini-firewall that protects a
6LoWPAN network from external hosts. The firewall has
a module in the 6BR and in the constrained nodes, and is
integrated with SVELTE. Our firewall, besides providing
typical blocking functionally against well-known external
attackers specified manually by the network administrator,
can block the external malicious hosts specified in real-
time by the nodes inside a 6LoWPAN network.

The destination host inside a 6LoWPAN node can see
the encrypted contents and hence analyze the malicious
traffic and notify the 6BR in real-time to filter traffic com-
ing from the compromised host, therefore stopping the
traffic before it reaches the constrained nodes. When a
constrained node notices an external host being abusive
it sends a packet with the host IP to the firewall module
in the 6BR. As is the case with the 6Mapper, if IPsec with
Authentication Header is used the nodes own ID can be
omitted. Otherwise, the nodes own ID need to be included.
If the node ID is included it can be compressed down to
2 bytes using 6LoWPAN header compression mechanisms.
The external host however can neither be compressed nor
omitted as it can be any valid IPv6 address. Therefore the
minimal size of the filtering-request packet is 16 bytes.
With the node ID the size of the packet is 18 bytes.

In order to make sure that no internal compromised node
can abuse this mechanism by requesting filtering of traffic
from a legitimate external host, both the source and the des-
tination is taken into account when filtering. The node inside
a 6LoWPAN network can only choose to filter the traffic des-
tined to itself. Such a firewall is still easy to circumvent as
the attacker can simply target another node in the network
and start the attack again; therefore, we extend the firewall
to adapt and block any external host if a minimum set of
nodes complain about the same external host. Our mini-fire-
wall is described in Algorithm 5.

Algorithm 5. Mini-firewall

Require:Host – The host to report
Require:Source – The node that sent the report
Require:GlobalFilter – A set of external hosts to filter

towards all nodes
Require:LocalFilter – A map mapping an external host

to a set of local nodes. The set describes all nodes
that have reported that specific external host.

ifHost in GlobalFilterthen
return Host already filtered

end if
ifHost in LocalFilterthen

Filter = LocalFilter.get (Host)
{Add Source to the list of nodes blaming Host}
Filter.add (Source)
ifFilter.size () P ReportThresholdthen

GlobalFilter.add (Host)
LocalFilter.remove (Host)

end if
end if

To be more preventive against global attackers, our
mini-firewall can be extended with AEGIS [14], a rule-
based firewall for wireless sensor networks.

4. Implementation

We implement SVELTE and the mini-firewall in the
Contiki OS [9], a well known operating system for the
IoT. Contiki has a well tested implementation of RPL (Con-
tikiRPL). As SVELTE is primarily designed to detect routing
attacks we make use of the RPL implementation in the
Contiki operating system to develop the 6Mapper, the fire-
wall, and the intrusion detection modules. The RPL imple-
mentation in Contiki utilizes in-network routing where
each node keeps track of all its descendants. We borrow
this feature to detect which nodes should be available in
the network. To provide IP communication in 6LoWPAN
we use lIP, an IP stack in Contiki, and SICSLoWPAN- the
Contiki implementation of 6LoWPAN header compression.
We also implement the sinkhole and selective forwarding
attacks against RPL to evaluate SVELTE. SVELTE is open
source2 and is available to researchers and industry.

5. Evaluation

In this section we present the empirical evaluation of
SVELTE. After describing our experimental setup, we quan-

http://www.shahidraza.info


Fig. 4. Network configurations and node placement that are used in the experiments in this section.

S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674 2669
titatively evaluate the detection rate and the true positives
for each experiment. We also measure the overhead of
SVELTE both at the node-level and network-wide. We eval-
uate the overhead in terms of energy consumption and the
memory footprint.

5.1. Experimental setup

We run our experiments in Contiki’s network simulator
Cooja [15] that has shown to produce realistic results [16].
Cooja runs deployable Contiki code. In our simulations, we
use emulated Tmote Sky [17] nodes.

In general, we expect that the 6BR is not a constrained
node and it can be a PC or a laptop; however, currently
there exists no PC equivalent 802.15.4 devices, therefore
we run the 6Mapper natively, i.e., on Linux, and communi-
cate with Cooja using a serial socket. For RPL with 6Mapper
we run each test 10 times, and calculate the average and
standard deviation to show the accuracy and precision of
our results. On the other hand, the experiments with RPL
only (without the 6Mapper) have no processing intensive
components and hence require no native parts. Therefore,
the experiments with RPL-only yield the same results for
all experiments as we use the same seed.

5.2. SVELTE detection and true positive rate

Here we quantitatively evaluate the detection rate, i.e.,
the number of malicious nodes successfully detected
against the total number of malicious nodes present in
the system, and the true positives rate, i.e., the total num-
ber of successful alarms divided by the total number of
alarms. We use three different configurations shown in
Fig. 4a–c. In each configuration node no 1 (green3) is the
6BR. Using these settings, we run experiments for 5, 10,
20, and 30 min. In all experiments, the 6Mapper is config-
ured to request data and to perform analysis every 2 min.
Therefore, the first 6Mapper request will be sent after
2 min. The first analysis is also performed after 2 min but
will however not yield any results as no data is yet gathered.
Therefore the earliest possible detection time is after 4 min.
3 For interpretation of color in Fig. 4, the reader is referred to the web
version of this article.
It is important to note that these are the settings in our
experiments and not the requirements for SVELTE. The mali-
cious nodes can spoof or alter information, and/or can per-
form sinkhole or selective forwarding attacks. In the
following experiments SVELTE first performs network graph
inconsistency detection as described in Section 3.2.1, before
detecting sinkhole or selective forwarding attacks. Each
experiment is run in a lossy and in a lossless network. Loss-
less links provide the perfect scenario for 6Mapper, as all re-
quests and responses return without delay and loss, and we
get a true picture of the network. This is further improved by
the fact that nodes more quickly can propagate their ranks
down in the network graph. The real 6LoWPAN networks
are mostly lossy, therefore we consider both cases in our
evaluation. The loss model is Cooja’s default radio model
that uses a Unit Disk Graph Medium (UDGM): Distance Loss
[15]. UDGM models the transmission range as a circle in
which only the nodes inside the circle receive packets. The
UDGM Distance Loss model, an extension of UDGM, also
considers interference.

Sinkhole Attacks with and without losses: The results for
the sinkhole attack in a lossless network scenario show al-
most 100% true positive rate on the first possible attempt
to analyze the network and no false positives are detected
during the simulations. A lossless network configuration
means that all requested data is gathered quickly and
without losses, which implies that the map of the network
is a perfect representation of the actual network. Because
of this it is very easy to detect all sinkhole attacks without
any false positives. In the lossy network configuration,
Fig. 4a, the true alarm rate is approximately 90%, as shown
in Fig. 5. However, with the increase in network size the
true alarm rate decreases; this is because for the larger net-
work configurations it takes some time before the RPL net-
work and our map of the network become stable and
complete enough to arrive at a higher true positive rate.
For example, in the scenario with 16 nodes it takes
30 min to arrive at the same true positive rate as is done
with 8 nodes after 10 min. The reason Fig. 5 shows a
non-existent detection rate for the case of 5 min is because
we only raise an alarm if the same node has been misbe-
having for more than two consecutive executions of our
algorithm. Hence, the current configuration implies that a
sinkhole attack can be detected after 6 min. Our approach



Fig. 5. For the smaller lossy network, SVELTE has 90% true positive rate
against sinkhole attacks which decreases for larger networks but gets
better when RPL becomes stable.

2670 S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674
does not require collection of two consecutive messages or
executions to work. Collecting multiple messages is advan-
tageous to make sure that it was actually an attack and not
a sudden link fluctuations, for example due to interference.
If the attack persists for two consecutive executions of our
algorithms then we raise an alarm; this is done primarily
to reduce false positives.

From these results it is evident that SVELTE is very
effective against sinkhole attacks in a network with no or
few losses, and in lossy networks it is more effective when
the RPL network has become stable.

Selective Forwarding Attack with and without losses: In a
selective forwarding attack a malicious node filters traffic
going through it. Hence, the 6Mapper will not be able to
get any data from any children of the malicious nodes in
the network. This in turn has the effect that the results of
the 6Mapper depend on the actual network topology, i.e.,
in the lossless case, unlike with sinkhole attacks, the re-
sults are not always 100%. We can see the effects of this
phenomenon in Fig. 6a. In a lossy network, as shown in
Fig. 6b, there is a gradual increase in the true positive rate
going towards a bit over 80% in all cases. As the network is
lossy messages are naturally lost, and if that happens sev-
eral consecutive times when mapping we are going to get
more false positives. If we raise the various thresholds in
our detection algorithms it is possible to lower the number
of false alarms, possibly at the cost of a decreased detection
rate. In order to reduce number of false positives we may
Fig. 6. SVELTE has acceptable true positive rate in both lossy and lossless net
forwarding attacks.
use location information of the nodes as discussed in
Section 7.

We also measure the detection rate during all of the
above experiments. We achieve 100% detection rate mean-
ing that we can detect all malicious nodes that launch sink-
hole and/or selective forwarding attacks. It should be noted
that the 100% detection rate is for the current set of exper-
iments with the current setting; we do not claim that
SVELTE should achieve 100% detection rate in all settings.
As can be seen in Figs. 5 and 6 the true positive rate is not
100%, i.e., we have some false alarms during the detection
of malicious nodes. This is mostly caused by our configura-
tion. It might be possible to alter the behavior of our detec-
tion algorithm, for example, by changing the threshold
used in Algorithm 2 and thus possibly get a different result
with regards to detection rate and/or false alarm rate.
5.3. Energy overhead

The nodes in the IoT are usually battery powered and
hence energy is a scarce resource. Here we measure
SVELTE’s power consumption both at node-level and at
system-level. We use Contiki Powertrace [18] to measure
the power consumption. The output from the Powertrace
application is the total time the different parts of the sys-
tem were on.

We calculate the energy usage and power consumption
using the nominal values, the typical operating conditions
of the Tmote sky, shown in Table 1. We use 3 V in our cal-
culations. In the rest of this paper MCU idle while the radio
is off is referred to as low power mode, or LPM. The time
the MCU is on and the radio is off is referred to as CPU time.
The time the radio is receiving and transmitting with the
MCU on is referred to as listen and transmit respectively.
We measure energy in both duty cycled 6LoWPAN net-
works, where the radio is mostly off, and in non-duty
cycled networks where the radio is always on for listening
and transmitting.
5.3.1. Network-wide with duty cycling
Here we evaluate network-wide energy consumption of

an RPL network with and without the 6Mapper and intru-
sion detection mechanisms in a duty cycled network. We
use ContikiMAC [19], a duty cycling MAC protocol in Con-
work considering that we have almost 100% detection rate for selective



Table 1
Operating conditions in Tmote sky

Typical conditions Min NOM Max Unit

Voltage 2.1 3.6 V
Free air temperature �40 85 C
MCU on, Radio RX 21.8 23 mA
MCU on, Radio TX 19.5 21 mA
MCU on, Radio off 1800 2400 lA
MCU idle, Radio off 54.5 1200 lA
MCU standby 5.1 21.0 lA

Table 2
Energy consumption for handling a single event inside a constrained node.

Event Energy (mJ)

6Mapper response handling 0.1465
Firewall handling 0.0478
Packet lost correction 0.0483

S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674 2671
tiki. We use the default ContikiMAC setting that has 8
wakeups per second and without traffic the radio is on
for 0.6% of the time. We run each experiment in a network
of 8, 16, 32 and 64 emulated Tmote sky nodes, with nodes
placed at the same locations.

Fig. 7a shows the network-wide energy usage for
30 min by all the nodes, calculated as follows

EnergyðmJÞ ¼ ðtransmit � 19:5 mAþ listen � 21:8 mA

þ CPU � 1:8 mAþ LPM � 0:0545 mAÞ
� 3 V=4096 � 8

From the network wide energy usage, we calculate the
average power as:

PowerðmWÞ ¼ EnergyðmJÞ
TimeðsÞ

which when divided by the total number of nodes gives us
the per node average power consumption during the
experiment. Fig. 7b shows the power consumption per
node. As can be seen in Fig. 7a and b the overhead of the
6Mapper is negligible for small networks (up to 16 nodes)
and increases with the number of nodes. The total over-
head of SVELTE is approximately 30% more than running
RPL only for networks with 64 nodes. Recall that with duty
cycling the radio is off for approximately 99% of the time.

5.3.2. Network-wide without duty cycling
We use the same network settings as in Section 5.3.1

and run the experiments in a non-duty cycled network
where the radio is always turned on to receive and trans-
Fig. 7. Network-wide energy usage in a duty cycled RPL-based network of differe
small; however, per node overhead grows with the increase in number of node
mit packets. When we compare the results of RPL with
the 6Mapper plus intrusion detection algorithms we see
that the overhead is negligible. This is because the radio
is always on and most of the nodes’ energy is consumed
on idle listening.

5.3.3. In-node energy overhead
Here we measure the energy consumption of handling a

single event of the 6Mapper and the firewall inside a con-
strained node. Table 2 lists the energy required to perform
different tasks; this does not include the energy needed to
send/receive packets which we have included in Sections
5.3.1 and 5.3.2. As can be seen in Table 2, a constrained
node consumes very little energy for local processing as
most of the processing intensive tasks are performed in
the 6BR where the 6Mapper and the main SVELTE detec-
tion modules reside. Therefore, the energy consumed for
in-node processing is clearly negligible.

5.4. Memory consumption

In Table 3 we show the extra ROM requirements of
SVELTE’s different modules. The baseline for each configu-
ration is different as some depend on different parts of the
Contiki system. For example, the 6Mapper that resides in
the 6BR (typically a PC) requires more ROM than other
nodes. However, the total additional ROM required to host
SVELTE’s modules inside a constrained node is 1.76k which
is well below the total available ROM in constrained de-
vices such as 48k in Tmote sky. In Table 3 it is important
to note the overhead column which shows the pure over-
head of SVELTE modules in Contiki. Even though 6Mapper
is not targeted towards running on constrained nodes it is
nt sizes shows that for network with less nodes SVELTE overhead is very
s as more and more nodes act as routers.



Table 3
Out of total 48k of ROM size in a constrained device (Tmoke sky), SVELTE
requires 1.76k. However, in the 6BR (typically a PC) the size grows when
the number of nodes increases.

Configuration Total ROM
(byte)

Overhead
(byte)

6Mapper client 44,264 1414
Firewall client 43,556 0246
Packet loss improvement 43,264 0122
6Mapper server (1 node, 1

neighbor)
46,798 3580

6Mapper server (8 node, 1
neighbor)

46,798 3846

6Mapper server (16 nodes, 1
neighbor)

46,800 4152

6Mapper server (16 nodes, 8
neighbors)

46,924 4724

Table 4
Additional RAM usage by SVELTE for handling a single event inside a
constrained node.

Event RAM (byte)

6Mapper response handling 162
Firewall handling 24
Packet lost correction 188

2672 S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674
still lightweight enough and can be used for small
networks.

We also measure the RAM size of 6Mapper response
handling, firewall, and packet loss correction which we
show in Table 4. The total RAM size in the Tmoke sky is
10 kb, hence SVELTE modules with 0.365k additional
RAM requirement can easily run in constrained nodes.

6. Related work

The IoT is a rather old concept and for many years RFID-
based sensors were considered as things in the IoT. With
the inception of 6LoWPAN, lightweight IP is being stan-
dardized and used in the IoT for the unique identification
and global connectivity of the things. Even when confiden-
tiality and integrity are enforced by message security solu-
tions such as IPsec [4] it is possible to disrupt the IoT. A
number of attacks against the IoT have been identified
[8] in addition to those against WSN [12] that are also
applicable to the IoT. Therefore, it is important to have sys-
tems that detect such attacks.

The concept of intrusion detection is quite old and
extensive research is carried out in this field mostly against
the Internet attacks and attacks against WSN. However, no
IDS are specifically designed in the context of IoT. Most of
the IDS approaches for WSN are based on a distributed
architecture and are built on the limitation that there is
no centralized management and control point. A common
IDS approach for WSNs is to utilize several special nodes
distributed evenly throughout the network. These special
nodes can either be physically different [20] or dynami-
cally distributed throughout the network [21,22]. In real
deployments, however, it cannot be guaranteed that par-
ticular nodes are always present in specific locations in
the network; also, the cost of employing mobile agents
that move through the network might be too high. Cluster-
ing based approaches have similar issues as each cluster
often requires a powerful entity for coordination [23].
The IoT has a novel architecture where the 6BR is always
assumed to be accessible and is a potential place for cen-
tralized management and control. SVELTE make use of this
novel IoT architecture and presents a new placement for
IDS. Using a mix of centralized and distributed architecture
SVELTE takes advantage of both realms.

Many IDS approaches are based upon watchdog tech-
niques [21,24] which could be used in the IoT. In addition
to being distributed and fully deployed on sensor nodes, a
general problem with watchdog based approaches is that
they require promiscuous listening, which consumes a lot
of power and therefore is not suitable for constrained de-
vices. Advanced anomaly detection approaches are pro-
posed [25,26], not primarily for WSNs, which on one
hand can detect many intrusions efficiently but on the
other hand requires intelligent learning, which is both
expensive and difficult in low powered 6LoWPAN
networks.

Most current IDS approaches require different routing
schemes that are not based on standardized mecha-
nisms. As far as we are aware, no approach is built
around 6LoWPAN and RPL in the context of the IoT.
Our approach considers RPL to decrease the cost of per-
forming intrusion detection. Likewise, we have taken
into account the fact that there is a central entity, the
6BR, that connects the sensor network with the conven-
tional Internet, which is a standard based networking
solution [1,2,7].

We do not claim that no other IDS approach can be used
in the RPL-connected IoT. Rather we argue that these ap-
proaches are built on different assumptions that do not
fully hold in the IoT architecture. Also, the IoT gives rise
to new challenges that do not exist in typical WSNs. How-
ever, there is a potential to incorporate already available
approaches in the SVELTE architecture. We discuss below
the possibilities to integrate available lightweight IDS ap-
proaches in SVELTE.

7. SVELTE extensions

One of the main advantages of our approach to intrusion
detection is that the proposed and developed system is very
easy to extend. There are a number of potential attacks
against the Internet of Things and it is likely that more at-
tacks will be discovered. As such extendability is very impor-
tant for an IDS. The 6Mapper is easy to extend both
conceptually and in practice. If a new detection scheme re-
quires more data to be added to the network graph the re-
sponse packets can easily be extended. Also, using the
already available data that we collect through the 6Mapper
it is possible to apply anomaly detection techniques, for
example via the use of Support Vector Machines [27], feature
vectors [28], or automata based approach [29].

Wormhole detection: One of the important to detect at-
tacks in wireless networks is wormhole [30]. If the 6Mapper
is extended with the signal strength of each node’s neighbor
it is also possible to detect wormhole attacks [31].



S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674 2673
Pinpointing filtering node: If a node is filtering traffic it is
beneficial to be able to pinpoint more accurately which
node is performing the filtering. The most straight forward
approach is to perform a traceroute [32] towards one of the
missing nodes.

Location information: RPL is primarily designed for static
networks, though it can be extended to support mobility
[33], it is possible to add node’s location in the 6Mapper
at the deployment time. The location of a node can also
be estimated in real-time using localization techniques
[34]. These location information help SVELTE to build a
physical map of the network that will ultimately enhance
its intrusion detection capabilities. For instance, with this
physical map rank modification and hence the sink-hole
attack can be detected with even lesser false positives
alarms. The location information of nodes will also help
SVELTE to mitigate the sybil and CloneID attacks aimed
to disrupt the routing information [35].

8. Conclusions

6LoWPAN networks will be an integral part of the IoT.
Considering the potential applications of the IoT it is
important that 6LoWPAN networks are protected against
internal and external intrusions. To this end we present
SVELTE, the first IDS for the IoT which consists of a novel
architecture and intrusion detection algorithms. We imple-
ment and evaluate SVELTE and show that it is indeed fea-
sible to use it in the context of RPL, 6LoWPAN, and the IoT.
To guard against global attacks we also design and imple-
ment a mini-firewall.

The detection algorithms in SVELTE currently target
spoofed or altered information, sinkhole and selective for-
warding attacks. However, it is flexible and can be ex-
tended to detect more attacks. Therefore, we plan to
complement SVELTE with novel and/or available intrusion
detection techniques that are feasible to use in the context
of the IoT.

Acknowledgements

This work was financed by the SICS Center for Net-
worked Systems (CNS), SSF through the Promos project,
and CALIPSO, Connect All IP-based Smart Objects, funded
by the European Commission under FP7 with contract
number FP7-ICT-2011.1.3-288879.

References

[1] J. Hui, P. Thubert, Compression Format for IPv6 Datagrams Over IEEE
802.15.4-Based Networks, RFC 6282, September 2011.

[2] N. Kushalnagar, G. Montenegro, C. Schumacher, IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview,
Assumptions, Problem Statement, and Goals, RFC 4919, August 2007.

[3] T. Kothmayr, W. Hu, C. Schmitt, M. Bruenig, G. Carle, Securing the
internet of things with DTLS, in: Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems, ACM, 2011,
pp. 345–346.

[4] S. Raza, S. Duquennoy, A. Chung, D. Yazar, T. Voigt, U. Roedig,
Securing communication in 6LoWPAN with compressed IPsec, in:
7th International Conference on Distributed Computing in Sensor
Systems (DCOSS’11), Barcelona, Spain, 2011, pp. 1–8.

[5] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, T. Voigt, Secure
Communication for the Internet of Things – A Comparison of Link-
Layer Security and IPsec for 6LoWPAN, Security and Communication
Networks, Wiley. http://dx.doi.org/10.1002/sec.406.

[6] Z. Shelby, K. Kartke, C. Bormann, B. Frank, Constrained Application
Protocol (CoAP), draft-ietf-core-coap-12, October 2012.

[7] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R.
Struik, J. Vasseur, R. Alexander, RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks, RFC 6550, March 2012.

[8] O. Garcia-Morchon, R. Hummen, S. Kumar, R. Struik, S. Keoh, Security
Considerations in the IP-Based Internet of Things, draft-garcia-core-
security-04, March 2012.

[9] A. Dunkels, B. Grönvall, T. Voigt, Contiki – a lightweight and flexible
operating system for tiny networked sensors, in: EMNets’04, Tampa,
USA, 2004, pp. 455–462.

[10] S. Kent, R. Atkinson, IP Encapsulating Security Payload (ESP), RFC
2406, Obsoleted by RFCs 4303, 4305, November 1998.

[11] S. Kent, R. Atkinson, IP Authentication Header, RFC 2402, Obsoleted
by RFCs 4302, 4305, November 1998.

[12] C. Karlof, D. Wagner, Secure routing in wireless sensor networks:
attacks and countermeasures, Ad Hoc Networks 1 (2) (2003) 293–
315.

[13] D. Couto, D. Aguayo, J. Bicket, R. Morris, A high-throughput path
metric for multi-hop wireless routing, Wireless Networks 11 (4)
(2005) 419–434.

[14] M. Hossain, V. Raghunathan, Aegis: a lightweight firewall for
wireless sensor networks, Distributed Computing in Sensor
Systems (2010) 258–272.

[15] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, T. Voigt, Cross-level
sensor network simulation with Cooja, in: Proceedings of 31st IEEE
Conference on Local Computer Networks, IEEE, 2006, pp. 641–648.

[16] F. Österlind, Improving Low-Power Wireless Protocols With Timing-
Accurate Simulation, Ph.D. Thesis, Uppsala University, 2011.

[17] J. Polastre, R. Szewczyk, D. Culler, Telos: enabling ultra-low power
wireless research, in: IPSN’05, 2005, pp. 364–369.

[18] A. Dunkels, J. Eriksson, N. Finne, N. Tsiftes, Powertrace: Network-
Level Power Profiling for Low-Power Wireless Networks, 2011.
<http://www.soda.swedish-ict.se/4112/>.

[19] A. Dunkels, The Contikimac Radio Duty Cycling Protocol, 2011.
<http://www.soda.swedish-ict.se/5128/>.

[20] I. Atakli, H. Hu, Y. Chen, W. Ku, Z. Su, Malicious node detection in
wireless sensor networks using weighted trust evaluation, in:
Society for Computer Simulation International Proceedings of the
2008 Spring Simulation Multiconference, 2008, pp. 836–843.

[21] R. Roman, J. Zhou, J. Lopez, Applying intrusion detection systems to
wireless sensor networks, in: Proceedings of IEEE Consumer
Communications and Networking Conference, 2006, pp. 640–644.

[22] T. Hai, E. Huh, M. Jo, A lightweight intrusion detection framework for
wireless sensor networks, Wireless Communications and Mobile
Computing 10 (4) (2009) 559–572.

[23] C. Rong, S. Eggen, H. Cheng, An efficient intrusion detection scheme
for wireless sensor networks, Secure and Trust Computing, Data
Management, and Applications 187 (2011) 116–129.

[24] S. Marti, T.J. Giuli, K. Lai, M. Baker, Mitigating routing misbehavior in
mobile ad hoc networks, in: Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking,
MobiCom ’00, ACM, New York, NY, USA, 2000, pp. 255–265.

[25] A. Mishra, K. Nadkarni, A. Patcha, Intrusion detection in wireless ad
hoc networks, Wireless Communications, IEEE 11 (1) (2004) 48–
60.

[26] K. Hwang, M. Cai, Y. Chen, M. Qin, Hybrid intrusion detection with
weighted signature generation over anomalous internet episodes, IEEE
Transactions on Dependable and Secure Computing 4 (1) (2007) 41–55.

[27] S. Kaplantzis, A. Shilton, N. Mani, Y. Sekercioglu, Detecting selective
forwarding attacks in wireless sensor networks using support vector
machines, in: ISSNIP 2007 3rd International Conference on
Intelligent Sensors, Sensor Networks and Information, IEEE, 2007,
pp. 335–340.

[28] M. Livani, M. Abadi, A PCA-based distributed approach for intrusion
detection in wireless sensor networks, in: International Symposium
on Computer Networks and Distributed Systems (CNDS), IEEE, 2011,
pp. 55–60.

[29] S. Misra, K. Abraham, M. Obaidat, P. Krishna, Laid: a learning automata-
based scheme for intrusion detection in wireless sensor networks,
Security and Communication Networks 2 (2) (2008) 105–115.

[30] Y. Hu, A. Perrig, D. Johnson, Wormhole attacks in wireless networks,
IEEE Journal on Selected Areas in Communications 24 (2) (2006)
370–380.

[31] W. Wang, B. Bhargava, Visualization of wormholes in sensor
networks, in: Proceedings of the 3rd ACM Workshop on Wireless
Security, ACM, 2004, pp. 51–60.

http://refhub.elsevier.com/S1570-8705(13)00100-5/h0005
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0005
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0005
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0005
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0005
http://dx.doi.org/10.1002/sec.406
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0010
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0010
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0010
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0015
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0015
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0015
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0020
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0020
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0020
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0025
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0025
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0025
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0025
http://www.soda.swedish-ict.se/4112/
http://www.soda.swedish-ict.se/5128/
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0030
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0030
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0030
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0035
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0035
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0035
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0040
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0040
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0040
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0040
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0040
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0045
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0045
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0045
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0050
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0050
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0050
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0055
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0055
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0055
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0055
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0055
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0055
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0060
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0060
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0060
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0060
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0060
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0065
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0065
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0065
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0070
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0070
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0070
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0075
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0075
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0075
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0075


2674 S. Raza et al. / Ad Hoc Networks 11 (2013) 2661–2674
[32] G. Malkin, Traceroute Using an IP Option, RFC 1393 (Experimental),
January 1993.

[33] K.C. Lee, R. Sudhaakar, L. Dai, S. Addepalli, M. Gerla, RPL under
mobility, in: 2012 IEEE Consumer Communications and Networking
Conference (CCNC), IEEE, 2012, pp. 300–304.

[34] Y. Chen, D. Lymberopoulos, J. Liu, B. Priyantha, Fm-based indoor
localization, in: Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services, ACM, 2012, pp. 169–
182.

[35] J. Newsome, E. Shi, D. Song, A. Perrig, The sybil attack in sensor
networks: analysis & defenses, in: Proceedings of the 3rd
International Symposium on Information Processing in Sensor
Networks, ACM, 2004, pp. 259–268.

Shahid Raza is a researcher at the Swedish
Institute of Computer Science and a final year
PhD student at the Mälardalen University,
Västerås, Sweden. His main research interests
are security issues in the IP-based wireless
sensor networks and lightweight security
solutions for the Internet of Things.
Linus Wallgren is a final year master student
at the School of Computer Science and Com-
munication at the Royal Institute of Technol-
ogy in Stockholm, Sweden. He is currently a
researcher at the Swedish Institute of Com-
puter Science. His main research interests are
computer security, embedded systems,
autonomous systems and their real world
applications.
Thiemo Voigt is a Professor of Computer
Science at the Department of Information
Technology and the VINN Excellence Centre
for Wireless Sensor Networks at Uppsala
University, Sweden. He is the leader of the
Networked Embedded Systems Group in the
Swedish Institute of Computer Science, Swe-
den. He received his Ph.D. in 2002 from
Uppsala University, Sweden. His current
research focuses on wireless sensor networks
and system software for embedded net-
worked devices and the Internet of Things.

http://refhub.elsevier.com/S1570-8705(13)00100-5/h0080
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0080
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0080
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0080
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0085
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0085
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0085
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0085
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0085
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0090
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0090
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0090
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0090
http://refhub.elsevier.com/S1570-8705(13)00100-5/h0090

	SVELTE: Real-time intrusion detection in the Internet of Things
	1 Introduction
	2 Background
	2.1 The Internet of Things
	2.2 RPL
	2.3 Security in the IoT
	2.4 IDS

	3 SVELTE: An IDS for the IoT
	3.1 6LoWPAN Mapper
	3.2 Intrusion detection in SVELTE
	3.2.1 Network graph inconsistency detection
	3.2.2 Checking node availability
	3.2.3 Routing graph validity
	3.2.4 End-to-end packet loss adaptation
	3.2.5 Sybil and CloneID attacks protection

	3.3 Distributed mini-firewall

	4 Implementation
	5 Evaluation
	5.1 Experimental setup
	5.2 SVELTE detection and true positive rate
	5.3 Energy overhead
	5.3.1 Network-wide with duty cycling
	5.3.2 Network-wide without duty cycling
	5.3.3 In-node energy overhead

	5.4 Memory consumption

	6 Related work
	7 SVELTE extensions
	8 Conclusions
	Acknowledgements
	References


